Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), y) → LE(s(x), y)
IF_GCD(false, s(x), s(y)) → MINUS(y, x)
IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
IF_MINUS(false, s(x), y) → MINUS(x, y)
MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))
IF_GCD(true, s(x), s(y)) → MINUS(x, y)
GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))
LE(s(x), s(y)) → LE(x, y)
GCD(s(x), s(y)) → LE(y, x)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), y) → LE(s(x), y)
IF_GCD(false, s(x), s(y)) → MINUS(y, x)
IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
IF_MINUS(false, s(x), y) → MINUS(x, y)
MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))
IF_GCD(true, s(x), s(y)) → MINUS(x, y)
GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))
LE(s(x), s(y)) → LE(x, y)
GCD(s(x), s(y)) → LE(y, x)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 4 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

R is empty.
The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF_MINUS(false, s(x), y) → MINUS(x, y)
MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF_MINUS(false, s(x), y) → MINUS(x, y)
MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)

The TRS R consists of the following rules:

le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
le(0, y) → true

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), y) → IF_MINUS(le(s(x), y), s(x), y)
IF_MINUS(false, s(x), y) → MINUS(x, y)

The TRS R consists of the following rules:

le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
le(0, y) → true

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))
GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))

The TRS R consists of the following rules:

le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
gcd(0, y) → y
gcd(s(x), 0) → s(x)
gcd(s(x), s(y)) → if_gcd(le(y, x), s(x), s(y))
if_gcd(true, s(x), s(y)) → gcd(minus(x, y), s(y))
if_gcd(false, s(x), s(y)) → gcd(minus(y, x), s(x))

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))
GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))

The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
le(0, y) → true

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)
gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

gcd(0, x0)
gcd(s(x0), 0)
gcd(s(x0), s(x1))
if_gcd(true, s(x0), s(x1))
if_gcd(false, s(x0), s(x1))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))
GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))

The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
le(0, y) → true

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


GCD(s(x), s(y)) → IF_GCD(le(y, x), s(x), s(y))
The remaining pairs can at least be oriented weakly.

IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(GCD(x1, x2)) = 1 + x1 + x2   
POL(IF_GCD(x1, x2, x3)) = x2 + x3   
POL(false) = 0   
POL(if_minus(x1, x2, x3)) = x2   
POL(le(x1, x2)) = 0   
POL(minus(x1, x2)) = x1   
POL(s(x1)) = 1 + x1   
POL(true) = 0   

The following usable rules [17] were oriented:

minus(0, y) → 0
if_minus(true, s(x), y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
if_minus(false, s(x), y) → s(minus(x, y))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ QDPOrderProof
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF_GCD(true, s(x), s(y)) → GCD(minus(x, y), s(y))
IF_GCD(false, s(x), s(y)) → GCD(minus(y, x), s(x))

The TRS R consists of the following rules:

minus(0, y) → 0
minus(s(x), y) → if_minus(le(s(x), y), s(x), y)
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
if_minus(true, s(x), y) → 0
if_minus(false, s(x), y) → s(minus(x, y))
le(0, y) → true

The set Q consists of the following terms:

le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(0, x0)
minus(s(x0), x1)
if_minus(true, s(x0), x1)
if_minus(false, s(x0), x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 2 less nodes.